top of page

Ing-Feng Chang Associate Professor

Ph.D., University of California, Riverside

Specialty: Plant Proteomics, Plant Biochemistry, Molecular Biology


Laboratory: Life Science Building R905

Telephone: 886-2-3366-2534

Current Research Interests


How plants regulate root growth and know how 14-3-3 proteins in plant to affect physiological responses plant responses and phosphorylated protein body changes under salt stress.

Plant-microbe Interactions

  • 14-3-3 and stress biology. 14-3-3 is a scaffold protein that can bind phsophorylated proteins mostly with Mode I (K/R XX S/T X P) or Mode II (K/R XX S/T X P) binding motif. Previous studies found 12 expressed 14-3-3 isoforms in Arabidopsis. Theseproteins are important in the regulation of stress responses in plant cells. In a proteomic analysis more than a hundred 14-3-3 interacting proteins were identified in Arabidopsis in vivo by use of tandem affinity purification (TAP)-tag affinity purification and 2D-LC/MS/MS. These 14-3-3 interacting partners can be potential phosphoproteins, which include transcription factors, translation factors, membrane receptors etc. Our lab will continue to use this system biology approach to identify more proteins using Arabidopsis as a model system. The role of 14-3-3 protein in the regulation of phosphorylation-dependent binding under stress condition is the major focus in our lab.​

  • Biochemistry of CDPK. Arabidopsis (Arabidopsis thaliana) genome encodes 34 calcium-dependent protein kinases (CDPKs) and eight CDPK-related kinases (CRKs). These protein kinases phosphorylate different substrates in plant cells. We identified phosphorylation sites of putative substrates phosphorylated by CDPK by use of mass spectrometry and neutral loss method. Our lab will continue to characterize the functionality of the phosphorylation of CDPK substrate in vivo.


Selected Publications

A. Papers

  1. Lin WC, Chen YH, Gu SY, Shen HL, Huang KC, Lin WD, Chang MC, Chang IF, Hong CY, Cheng WH.* 2021. CFM6 is an essential CRM protein required for the splicing of nad5 transcript in Arabidopsis mitochondria. Plant Cell Physiol.

  2. Chen PY, Hsu CY, Lee CE, Chang IF. 2021. Arabidopsis glutamate receptor GLR3.7 is involved in abscisic acid response. Plant Signal Behav.

  3. Wang, P.H., Lee, C.E., Lin, Y.S., Lee, M.H., Chen, P.Y., Chang, H.C., Chang, I.F.* 2019. The Glutamate Receptor-Like Protein GLR3.7 Interacts With 14-3-3ω and Participates in Salt Stress Response in Arabidopsis thaliana. Frontiers in Plant Science 10:1169

  4. Chang, H.C., Tsai, M.C., Wu, S.S., Chang, I.F.* 2019. Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana. Botanical Studies 60:16.

  5. ​Shih, Y.J., Chang, H.C., Tsai, M.C., Wu, T.Y., Wu, T.C., Ping Kao, P., Wen-Yuan Kao, W.Y., Chang, I.F. * 2018. Comparative leaf proteomic profiling of salt-treated natural variants of Imperata cylindrica. Taiwania 63: 171-182.

  6. Singh, S.K., Chien, C.T., Chang, I,.F.* 2016. The Arabidopsis glutamate receptor-like gene GLR3.6 controls root development by repressing the Kip-related protein gene KRP4. Journal of Experimental Botany 67(6):1853-69. (SCI)

  7. Wu, T.Y.,Kao, P., Chang, C.L., Hsu, P.H., Chou, C.H., Chang, I,.F.* 2015. Phosphoproteomic profiling of microsomal fractions in leaves of Cogon grass (Imperata cylindrica). Plant OMICS(SCI)

  8. Lee, T.C., Xiong, W., Paddock, T., Carrieri, D., Chang, I.F., Chiu, H.F., Ungerer, J., Juo, S.H., Maness, P.C., Yu, J. 2015. Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803. Metabolic Engineering 30: 179-189. (SCI)

  9. Chen, Y.T., Shen, C.H., Lin, W.D., Chu, H.A., Huang, B.L., Kuo, C.I., Yeh, K.W., Huang, L.C., Chang, I.F. 2013. Small RNAs of Sequoia sempervirens during rejuvenation and phase change. Plant Biology 15: 27-36. (SCI)

  10. Huang, S.J., Chang, C.L., Wang, P.H., Tsai, M.C., Hsu, P.H., Chang, I.F.* 2013. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana. Journal of Experimental Botany 64: 4343-4360. (SCI)

  11. Chen, Y.T., Shen, C.H., Lin, W.D., Chu, H.A., Huang, B.L., Kuo, C.I., Yeh, K.W., Huang, L.C., Chang, I.F. 2013. Small RNAs of Sequoia sempervirens during rejuvenation and phase change. Plant Biology 15: 27-36. (SCI)

  12. Chu, H.A., Chang, I.F., Shen, C.H., Chen, Y.T., Wang, H.T., Huang, L.C., Yeh, K.W. 2012. Photosynthetic properties and photosystem stoichiometry of in vitro-grown juvenile, adult, and rejuvenated Sequoia sempervirens (D. Don) Endl. Botanical Studies53: 223-227. (SCI)

  13. Chang, I.F.*, Hsu, J.L., Hsu, P.H., Sheng, W.A., Lai, S.J., Lee, C., Chen, C.W., Hsu, J.C., Wang, S.Y., Wang, L.Y., Chen, C.C. 2012. Comparative phosphoproteomic analysis of microsomal fractions of Arabidopsis thaliana and Oryza sativa subjected to high salinity. Plant Science 185-186: 131-142. (SCI)

  14. Curran, A.+, Chang, I.F.+, Chang, C.L. Garg, S., Garg, S., Miguel, R.M., Barron, Y.D., Li, Y., Romanowsky, S., Cushman, J.C., Gribskov, M., Harmon, A.C., Harper, J.F.* 2011. Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates. Frunt Plant Science 2:36 (+: equal contributions) (SCI)

  15. Chang, I. F., Chen, P. J., Shen, C. H., Hsieh, T. J., Hsu, Y. W., Huang, B. L., Kuo, C. I., Chen, Y. T., Chu, H. A., Yeh, K. W., Huang, L. C.* 2010. Proteomic profiling of proteins associated with the rejuvenation of Sequoia sempervirens (D. Don) Endl. Proteome Science 8: 64. (SCI)

  16. Hsu, J. L., Wang, L. Y., Wang, S. Y., Lin, C. H., Ho, K. C., Shi, F. K. and Chang, I. F.* 2009. Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana. Proteome Science 7: 42. (SCI)

  17. Chang,I. F.+*, Curran A.+, Woolsey R., Quilici D., Cushman J., Mittler R., Harmon A., Harper J. F.* 2009. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9: 2697-2985. (+: equal contributions) (SCI)

  18. Hsu, Y. W., Sihgh, S. K., Chiang, M. Y., Wu, Y. Y., Chang, I. F. 2009.Strategies to lower greenhouse gas level by rice agriculture. African Journal of Biotechnology 8: 126-132.

  19. Chang, I. F. 2008. Ecotypic variation of a medicinal plant Imperata cylindrica populations in Taiwan: mass spectrometry-based proteomic evidence. Journal of Medicinal Plants Research 2: 71-76.

  20. Hsiao, H. Y., Chang, I. F. 2008. Proteomic profiling of rat brain discharged by ultrasound associated with high frequency electro-magnetic field. Proteomics Research Journal 1: 41-53.

  21. Chang, I. -F. 2006. Mass-spectrometry based proteomic analysis of the epitope-tag affinity purified protein complex in eukaryotes.  Proteomics  6: 6158-6166 (Review). (SCI)

  22. Chang, I. -F. and Chou, C. H. 2006. Ecotypic variation of Imperata cylindrica populations in Taiwan: II. Physiological and biochemical evidences.  Botanical Studies  47: 175-184. (SCI)

  23. Rodriguez Milla, M. A., Uno, Y., Chang, I. –F., Townsend, J., Maher, E. A., Quilici, D. and Cushman J. C. 2006. Arabidopsis AtCPK11, a calcium-dependent protein kinase, phosphorylates AtDi19, a nuclear zinc finger protein.  FEBS Letters  580: 904-911. (SCI)

  24. Rodriguez Milla, M. A., Townsend, J.,  Chang, I. –F.  and Cushman, J. C. 2006. Arabidopsis Di19-Related Genes Encode a Novel Family of Proteins With Two Unusual Cys2/His2 Zinc-Finger Motifs Evolutionary Conserved Involved in ABA-Independent Stress-Signaling Pathways.  Plant Molecular Biology  61: 13-30. (SCI)

  25. Chang, I. –F. , Hsiao, H. Y. 2005. Induction of RhoGAP and pathological changes characteristic of Alzheimer’s disease by UAHFEMF discharge in rat brain. Current Alzheimer Research  2:559-569. (SCI)

  26. Zanetti, M. E., Chang, I. -F., Galbraith, D. W., Bailey-Serres, J. 2005. Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression.  Plant Physiology  138: 624-635. (SCI)

  27. Chang, I. -F.*, Szick-Miranda*, K., Pan, S., Bailey-Serres, J. 2005. (*: equal contributions) Proteomic Characterization of Evolutionarily Conserved and Variable Proteins of Arabidopsis Cytosolic Ribosomes.  Plant Physiology  137: 848-862. (SCI)

  28. Yang, C. M., Wang, M. C., Lu, Y. F., Chang, I. -F., Chou, C. H. 2004. Humic substances affect the activity of chlorophyllase.  Journal of Chemical Ecology  30: 1057-1065. (SCI)

  29. Yang, C. M., Chou, C. H.,  Chang, I. -F. and Lin, S. J. 2004. Effects of three allelopathic phenolics on chlorophyll accumulation of rice ( Oryza sativa ) seedlings: II Stimulation of consumption-orientation.  Bot. Bull. Acad. Sin.  45: 119-125. ( SCI )

  30. Williams, A.*, Werner-Fraczek. J.*,  Chang, I.-F.,* Bailey-Serres, J. (*: equal contributions) 2003. Regulated phosphorylation of 40S ribosomal S6 in root tips of maize. Plant Physiology  132: 2086-2097. (SCI)

  31. Barakat, A., Szick-Miranda, K.,  Chang, I. -F., Guyot, R., Blanc, G., Cooke, R., Delseny, M., Bailey-Serres, J. 2001. The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome.  Plant Physiology  127: 398-415. (SCI) .

B. Book chapter

Kao, P., Wu, T. Y., Chang, C. L., Chou, C. H., Chang, I. F. 2011. Decreasing of Population Size of Imperata cylindrica Mangrove Ecotype & Sea-Level Rising, Global Warming Impacts - Case Studies on the Economy, Human Health, and on Urban and Natural Environments, Stefano Casalegno (Ed.), ISBN: 978-953-307-785-7, InTech.

Courses Taught

  • General Botany

  • Proteomics

  • Plant Physiology

  • Methods in Plant Molecular Biology

bottom of page