靳宗洛 教授

E-mail: jinnt@ntu.edu.tw
電話: (02) 33662539
專長: 植物生理與生化、植物生長與發育、植物分子生物
學歷: 國立臺灣大學博士

研究室: 生命科學館913室

近年研究主題

植物熱休克蛋白質及熱逆境
植物超氧岐化酶及抗氧化機制
功能性基因體調控植物生長及發育 

植物生理及功能性基因研究室

  • 熱逆境反應是普遍存在於生物界中,從原核生物到酵母菌、果蠅、植物、人類等都存在,是一種具高度保留性的生命現象。許多證據都支持熱逆境下所新產生的熱逆境蛋白質,可以用來保護細胞免受高溫或其他逆境之傷害。植物因無法自由遷移,所以當面臨高溫逆境時,勢必演化出較動物複雜的機制以便能適應此逆境,而植物如何抵抗逆境的機制,一直是學者們想要了解的課題。本研究室藉由分子生物學的角度,著重在研究熱休克蛋白質基因成員、生理功能、表現量、及對調控子及調控單元的研究,深入探討植物如何適應及克服環境高溫的不利因素,並利用遺傳工程技術希,望培育出更具耐性的農作物品種。
    超氧自由基,是所有生物在正常有氧代謝過程中自然產生的活性氧分子,會造成氧化逆境,產生連鎖反應,破壞細胞,是老化及疾病的元兇。超氧岐化酶為超氧自由基的清除者,可解除氧化逆境。超氧歧化酶依其鑲嵌金屬的不同,可分成銅鋅、鐵及錳超氧岐化酶。這些金屬輔酶為超氧歧化酶活性所必須,但皆為過渡金屬,若為游離態時會造成細胞的傷害。針對這些金屬離子兩極化的需求,預測細胞中應有專一性的金屬鑲嵌蛋白的存在,並認為超氧歧化酶需經由這些鑲嵌蛋白的作用,將這些離子傳遞至超氧歧化酶而使其活化。我們利用分子遺傳學方法,分離、鑑定並探討這些金屬鑲嵌蛋白分子之生化特性。期望研究的成果能提供更多活化超氧歧化酶之重要線索,也提供細胞中金屬離子衡定之相關訊息及想法,希望能增強植物的抗氧化能力及延緩老化現象。 

代表著作 

A. 學術期刊論文:

  1. Victor P. Bulgakov*, Hui-Chen Wu, Tsung-Luo Jinn. (2019) Coordination of ABA and Chaperone Signaling in Plant Stress Responses. Trends Plant Sci. 2019 May 10. pii: S1360-1385(19)30100-1. doi: 10.1016/j.tplants.2019.04.004.

  2. Wu H.C., Bulgakov V.P. and Jinn T.L.* (2018) Pectin methylesterases: cell wall remodeling proteins are required for plant response to heat stress. Frontiers in Plant Science, 06 November 2018, doi: 10.3389/fpls.2018.01612

  3. ​Wu H.C., Huang Y.C., Stracovsky L. and Jinn T.L.* ( 2017 ) Pectin methylesterase is required for guard cell function in response to heat. Plant Signaling and Behavior 12: e1338227. DOI: 10.1080/15592324.2017.1338227.

  4. Wu H.C., Huang Y.C., Liu C.H. and Jinn T.L.* ( 2017 ) Using silicon polymer impression technique and scanning electron microscopy to measure stomatal aperture, morphology, and density. Bio-protocol 7: e2449. DOI: 10.21769/BioProtoc.2449.

  5. Huang Y.C., Wu H.C., Wang Y.D., Liu C.H., Lin C.C., Luo D.L. and Jinn T.L.* ( 2017 )Pectin Methylesterase34 contributes to heat tolerance through its role in promoting stomatal movement. Plant Physiology 74: 748-763.

  6. Huang Y.C., Niu C.Y., Yang C.R. and Jinn T.L.* ( 2016 ) The heat-stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiology 172: 1182-1199.

  7. Kuo W., Huang C., Shih C. and Jinn T.L.* ( 2013 ) Cellular extract preparation for superoxide dismutase ( SOD ) activity assay. Bio-protocol 3: e811.http://www.bioprotocol.org/e811

  8. Xia S., Cheng Y.T., Huang S., Win J., Soards A., Jinn T.L., Jones J.D., Kamoun S., Chen S., Zhang Y. and Li X. (2013) Regulation of transcription of nucleotide-binding leucine-rich repeat-encoding genes SNC1 and RPP4 via H3K4 trimethylation. Plant Physiology 162: 1694-1705.

  9. Kuo W.Y., Huang C.H., Liu A.C., Cheng C.P., Li S.H., Chang W.C., Weiss C., Azem A. and Jinn T.L.* (2013) CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytologist 197: 99-110.

  10. Kuo W.Y., Huang C.H. and Jinn T.L.* (2013) Chaperonin 20 might be an iron chaperone for superoxide dismutase in activating iron superoxide dismutase (FeSOD).Plant Signaling and Behavior 8: 2, e23074.

  11. Wu H.C., Luo D.L., Vignols F. and Jinn T.L.* (2012) Heat shock-induced biphasic Ca2+ signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant Cell and Environment 35: 1543-1557.

  12. Wu H.C. and Jinn T.L.* (2012) Oscillation regulation of Ca2+/calmodulin and heat-stress related genes in response to heat stress in rice (Oryza sativa L.). Plant Signaling and Behavior 7: 1056-1057.

  13. Huang C.H., Kuo W.Y., Weiss C, and Jinn T.L.* (2012) Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis. Plant Physiology 158: 737-746.

  14. Huang C.H., Kuo W.Y. and Jinn T.L.* (2012) Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis. Plant Signaling and Behavior 7: 429-431.

  15. Wu T.H., Liao M.H., Kuo W.Y., Huang C.H., Hsieh H.L. and Jinn T.L.* (2011)Characterization of copper/zinc and manganese superoxide dismutase in green bamboo (Bambusa oldhamii): Cloning, expression and regulation. Plant Physiology and Biochemistry 49: 195-200.

  16. Wu H.C., Hsu S.F., Luo D.L., Chen S.J., Huang W.D., Lur H.S. and Jinn T.L.* (2010)Recovery of heat shock-triggered released apoplastic Ca2+ accompanied by pectin methylesterase activity is required for thermotolerance in soybean seedlings. Journal of Experimental Botany 61: 2843-2852.

  17. Wu H.C. and Jinn T.L.* (2010) Heat shock-triggered Ca2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca2+ oscillation are crucial for plant thermotolerance. Plant Signaling and Behavior 5: 1252-1256.

  18. Hsu S.F., Lai H.C. and Jinn T.L.* (2010) Cytosolic-localized heat shock factor binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis.Plant Physiology 153: 773-784.

  19. Hsu S.F. and Jinn T.L.* (2010) AtHSBP functions in seed development and the motif is required for subcellular localization and interaction with AtHSFs. Plant Signaling and Behavior 5: 1042-1044.

  20. Cho S.K., Larue C., Chevalier D., Wang H., Jinn T.L., Zhang S. and Walker J.C. (2008) Regulation of floral organ abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 105: 15629-15634 (+Equal Contribution).

  21. Chang P.F.L., Jinnt T.L., Huang W.K., Chang H.M. and Wang C.W. (2007) A cDNA clone from rice (Oryza sativa L.) encoding a class II small heat shock protein is induced by heat stress, mechanical injury, and salicylic acid. Plant Science 172: 64-75.

  22. Chu C.C., Lee W.C., Guo W.Y., Pan S.M., Chen L.J., Li H-m. and Jinn T.L.* (2005) A copper chaperone for superoxide dismutase that confers three types of CuZnSOD activity in Arabidopsis thaliana. Plant Physiology 139: 425-436.

  23. Guan J.C., Jinn T.L., Yeh C.H., Feng S.P., Chen Y.M. and Lin C.Y. (2004)Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Molecular Biology 56: 795-809.

  24. Jinn T.L., Chou C.C., Song W.W., Chen Y. M. and Lin C.Y. (2004) Azetidine induced accumulation of class I low-molecular-weight heat shock proteins in the soluble fraction provide thermotolerance in soybean seedlings. Plant and Cell Physiology45: 1759-1767.

  25. Jinn T.L., Stone J.M., and Walker J.C. (2000) HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes and Development 14: 108-117.

  26. Jinn T.L., Chang P., Chen Y.M., Key J.L. and Lin C.Y. (1997) Tissue-type-specific heat-shock response and immunolocalization of class I low-molecular-weight heat-shock proteins in soybean. Plant Physiology 114: 429-438.

  27. Jinn T.L., Chen Y.M. and Lin C.Y. (1995) Characterization and physiological function of class I low-molecular-mass, heat-shock protein complex in soybean. Plant Physiology 108: 693-701.

  28. Lee Y.L., Chang P.F., Yeh K.W., Jinn T.L., Kung C.C., Lin W.C., Chen Y.M. and Lin C.Y. (1995) Cloning and characterization of a cDNA encoding an 18.0-kDa class-I low-molecular-weight heat-shock protein from rice. Gene 165: 223-227.

  29. Yeh K.W., Jinn T.L., Yeh C.H., Chen Y.M. and Lin C.Y. (1994) Plant low-molecular-mass heat-shock proteins: their relationships to the acquisition of thermotolerance in plants. Biotechnology and Applied Biochemistry 19: 41-49.

  30. Jinn T.L., Wu S.H., Yeh C.H., Hsieh M.H., Yeh Y.C., Chen Y.M. and Lin C.Y. (1993) Immunological kinship of class I low-molecular-mass heat shock proteins and thermostabilization of soluble proteins in vitro among plants. Plant Cell Physiology34: 1055-1062.

  31. Lin C.Y., Jinn T.L., Hsieh M.H., Yeh Y.C. and Chen Y.M. (1993) Class I low molecular weight heat shock proteins in plants: immunological study and thermoprotection against heat denaturation of soluble proteins. Biochemical and Cellular Mechanism86: 140-155.

  32. Hsieh M.H., Chen J.T., Jinn T.L., Chen Y.M. and Lin C.Y. (1992) A class of soybean low molecular weight heat shock proteins: immunological study and quantitation. Plant Physiology 99: 1279-1284.

  33. Jinn T.L., Yeh Y.C., Chen Y.M. and Lin C.Y. (1989) Stabilization of soluble proteins in vitro by heat shock proteins-enriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiology 30: 463-469.

B. 國內外學術研討會論文或摘要:

  1. Huang C.H., Kuo W.Y., Jinn T.L. (2013) CPN20, an CPN60 cofactor, acts as an iron chaperon for SOD independently of chaperonin-mediated protein folding activity in Arabidopsis chloroplasts. Plant Physiology, Abstract P01032.

  2. Huang C.H., Kuo W.Y., Jinn T.L. (2012) Models for the mechanism in CCS-independent activation pathway. Plant Physiology, Abstract P09033.

  3. Hsu S.F., Lai H.C., and Jinn T.L. (2011) Cytosolic-localized heat shock factor binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis.Plant Physiology. Abstract P07069

  4. Kuo W.Y., Huang C.H., and Jinn T.L. (2010) Arabidopsis cpn20 acts as an iron chaperone for FeSOD activation in chloroplasts independently of its co-chaperonin function. Plant Physiology. Abstract P08095

  5. Huang C.H., Kuo W.Y., and Jinn T.L. (2009) Arabidopsis copper-zinc superoxide dismutase (SOD) can be activated by copper chaperone for SOD1-independent pathway via glutathione. Plant Physiology. Abstract P27016

  6. Cho S.K., Chevalier D., Lease K., Jinn T.L., and Walker J. (2007) HAESA and HAESA-like 2 activate floral organ abscission in an ethylene-independent manner. Plant Physiology. Abstract P28048

  7. Wu H.C. and Jinn T.L. (2007) A versatile calmodulin is temperature-dependent sensor. Plant Physiology. Abstract P01030

  8. Guan J.C., You J.W., Yeh C.H., Jinn T.L., and Lin C.Y. (2006) A comprehensive analysis of rice small heat shock protein gene family. Plant Physiology. Abstract P09027

  9. Wu H.C. and Jinn T.L. (2006) The mobilizes of Ca2+ from extracellular sources that induced by heat shock to regulate cell wall remodeling and signaling to confer thermotolerance in rice seedlings. Plant Physiology. Abstract P09037

  10. Hsu S.F. and Jinn T.L. (2005) Study of a serrate leaf mutant caused by cyclin-dependent kinase inhibitors overexpressed in Arabidopsis. Plant Physiology. Abstract 692

  11. Chang P.F.L., Huang W.G., Jinn T.L., Wang C.W., Lin P.L., and Chang H.M. (2005) The class II small heat shock gene of rice (Oryza sativa L.), Oshsp18.0-CII, is induced by heat stress, mechanical injury, and also confers tolerance to heat and UV stresses when overexpressing it in Escherichia coli. Plant Physiology. Abstract 178

  12. Chu C.C. and Jinn T.L. (2004) Copper chaperone for superoxide dismutase modulates the activity and stability of CuZnSOD in Arabidopsis thaliana. Plant Physiology. Abstract 094

  13. Chang C.C. and Jinn T.L. (2004) Study of T-DNA tagged mutants which affect inosine-uridine nucleoside hydolase gene expression in Arabidopsis. Plant Physiology. Abstract 324

  14. Guan J.C., Feng S.P., Jinn T.L., and Lin C.Y. (2004) The Expression profile of rice class I sHSP gene family in response to cytotoxic agents induced HS-like response. Plant Physiology. Abstract 127

  15. Li Y.H. and Jinn T.L. (2003) A flavin monooxygenase-like overexpression mutant with narrow, down-curing and long petioles phenotypes in Arabidopsis. Plant Physiol. Abstract 455

  16. Guan J.C., Feng S.P., Jinn T.L., and Lin C.Y. (2003) Expression profile of nine members of rice class I sHSP gene family. Plant Physiology. Abstract 201

  17. Guan J.C., Feng S.P., Jinn T.L., and Lin C.Y. (2003) Identification and expression analysis of class I small heat-shock protein gene family in rice (Oryza sativa cv. Tainung No.67) seedlings. Cell Biology. Abstract B508

C. 學術專書:

  1. 基因工程與生物技術-基因選殖及DNA分析。 (Gene cloning and DNA analysis. 5th edition, T. A. Brown)  編譯者: 靳宗洛;何國傑;葉開溫;鄭石通。  藝軒圖書出版社 (2008, 400 pages)

開設課程

  • 普通植物學

  • 分子生物學

  • 植物生長與發育

  • 逆境植物學

  • 植物分子生物學專論

  • 植物基因釣取

國立臺灣大學植物科學研究所 National Taiwan University Institute of Plant Biology

+886-2-3366-2525~6    ntuplant@ntu.edu.tw

地址: 10617 臺北市大安區羅斯福路四段 1 號   臺大生命科學館 307 室

address: Room 307, Life Science Building, NTU. No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan 10617